

Organic bio-electronic sensors for ultra-sensitive chiral differential detection

Luisa Torsi

Dipartimento di Chimica, Università degli Studi di Bari "A. Moro" (I)

- 2 printable bio-electronic field-effect transistors
- 3 detections down to fM, chiral differential detection with an ESF > 6
- 4 Odorant Binding and anti-C Reactive Protein as cases of study

printable electronics

minority report - Steven Spielberg (2002)

SAMSUNG Flexible AM OLED

point-of-care biosensors

sensing arrays: this is the way to go

Affymax DNA chip

http://bmel.korea.ac.kr/image/intro_fig_5_4.gif

optical and electrochemical method

PROS

- Easy miniaturization
- CMOS compatible (no reference electrode) - Label-free
- Low cost (printing fab on plastic, fabric, paper)

Y

CONS

- Totally novel approach
 - New production paradigms
- Critical is the control of the interfaces

the search for quantitative stick testing

UNIVERSITÀ degli studi di bari ALDO MORO

Schematic drawing of the RenaStick dipstick showing advantages and disadvantages of point-of-care testing in the setting of acute kidney injury. www.nature.com 2014

printed circuits on paper

electronic OFET bio-sensors @UNIBA

DIELECTRIC

osc

OSC

DIELECTRIC G

Chem Soc Rev

TUTORIAL REVIEW

OFET

bio-sensors

SVYYYYD

DIELECTRIC

Chemical Society Reviews

Organic field-effect transistor sensors: a tutorial

Luisa Torsi,* Maria Magliulo, Kyriaki Manoli and Gerardo Palazzo

Organic thin-film transistors embedding biological recognition elements are successfully employed as ultrasensitive, low-cost, label-free biosensors in several analytical fields.

L. Torsi et al. Chem. Soc. Rev., 2013, 42 (22), 8612 - 8628

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

RSCPublishing

c3cs60127g

impact of a binding event on electronic properties

V_T changes

 \Box impacts on the OSC transport properties $\rightarrow \mu_{FET}$ changes

 $\Box \text{ Impacts on the gating system capacitance} \rightarrow C_i \text{ changes}$

Ion Selective FET (ISFET) like bio-sensor

GAS & Ion-Selective FET (ISFET)

electronic OFET bio-sensors

UNIVERSITÀ Deglistudi di bari ALDO MORO

L. Torsi et al Angew. Chem. Int. Ed. 2015, 54, 12562-12576

FBI-OFET sensors

April 24, 2012 | vol. 109 | no. 17 | pp. 6429-6434

Proceedings of the National Academy of Sciences of the United States of America

www.pnas.org

Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors

electronic transduction of proton translocation

ADVANCED

www.advmat.de

www.MaterialsViews.com

Tailoring Functional Interlayers in Organic Field-Effect Transistor Biosensors

Maria Magliulo, Kyriaki Manoli, Eleonora Macchia, Gerardo Palazzo, and Luisa Torsi*

electronic OFET bio-sensors

UNIVERSITÀ Deglistudi di bari ALDO MORO

L. Torsi et al Angew. Chem. Int. Ed. 2015, 54, 12562-12576

how Electrolyte Gated OFETs work

water self-ionization

H. Klauk, Organic electronics II: More materials and applications; Wiley-VCH S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, C. D. Frisbie, Adv. Mater. 2013, 25, 1822-1846;

DEGLI STUDI DI BARI

Polyelectrolytes in EGOFET ACS APPLIED MATERIALS & INTERFACES **Research Article**

www.acsami.org

Plain Poly(acrylic acid) Gated Organic Field-Effect Transistors on a **Flexible Substrate**

Liviu M. Dumitru, Kyriaki Manoli, Maria Magliulo, Luigia Sabbatini, Gerardo Palazzo, and Luisa Torsi* Department of Chemistry, "Aldo Moro" University, Via Orabona 4, Bari 70126, Italy

EGOFET - architectures

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

New polyelectrolyte as gating material in OFETs

Calcium alginate fruit (blueberry) "caviar"

Alginate capsules

Electrical performance

Green Electronics

M. Irimia-Vladu et la. Adv. Funct. Mater., 2010, 20 C. J. Bettinger and Z. Bao , Adv. Mater., 2010 , 22 , 651..

Printing pigments

ADVANCED MATERIALS

www.MaterialsViews.com

www.advmat.de

Hydrogen-Bonded Semiconducting Pigments for Air-Stable Field-Effect Transistors

Eric Daniel Głowacki,* Mihai Irimia-Vladu, Martin Kaltenbrunner, Jacek Gąsiorowski, Matthew S. White, Uwe Monkowius, Giuseppe Romanazzi, Gian Paolo Suranna, Piero Mastrorilli, Tsuyoshi Sekitani, Siegfried Bauer, Takao Someya, Luisa Torsi, and Niyazi Serdar Sariciftci

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

From kitchen to lab: Curiosity driven research

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

how EGOFETs work

water self-ionization

H. Klauk, Organic electronics II: More materials and applications; Wiley-VCH S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, C. D. Frisbie, Adv. Mater. 2013, 25, 1822-1846;

the capacity modulated device

UNIVERSITÀ degli studi di bari ALDO MORO

electrolyte gated OFET (EGOFET) sensor

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

water gated OFET sensors - review

charged species → stronger long-range coulomb interactions (10-100 kJ/mol) → electrochemical potential → ISFET

neutral species (or species carrying a dipole moment) → weaker shortrange interactions such as the dipole-dipole or the dispersive ones (2 kJ/mol) → chemical potential → capacity modulated FET

L. Torsi et al Angew. Chem. Int. Ed. 2015, 54, 12562-12576

Odorant Binding Proteins EGOFET sensor

UNIVERSITĂ degli studi di bari ALDO MORO

Odorant Binding Proteins

Odorant Binding Proteins

Shuttle odorant molecules Odorant clearance mechanism

FLEXSmell

Carton Pack **BO**test

UNIVERSITÀ degli studi di bari ALDO MORO

vertebrate odorant system

UNIVERSITÀ Deglistudi di bari ALDO MORO

Botest

why odorant binding proteins ?

- OBPs are present in high concentrations of mM range in mammalian nose and insects antennae
 - Soluble proteins, can be expressed in bacterial systems at low-cost
- Highly stable in ambient/hot conditions
 - Binds reversibly to odorants

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

COLI POLYTICHNIQUI

MANCHESTER

pig Odorant Binding Proteins (pOBP)

Pig odorant binding proteins (pOBP)

The protein is characterized by a hydrophobic β -barrel cavity,

Differently from other OBPs such as the bovine one, pOBP b-barrel cavity is devoid of naturally occurring bound ligand

It bears a negative charge

No study on chiral interactions; carvone enantiomers

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

OUL FOUTICHNIOU

MANCHESTER

chiral ligand molecules

The binding process

competitive fluorescent biding assay

OBP in a water gated **OFET** sensor

Cinzia Di Franco - CNR - Bari Maria Vittoria Santacroce and Gaetano Scamarcio - University of Bari

Mulla, M.Y. et al. Nature Communications, 2015, 6, 6010

Electrochemical pOBP SAM characterization

Hindrance (B) 0.6 MANCHESTER Au-3MPA (SAM) 0.4 -10 0.2 -20 Au-Bare -30 0.0 -0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Electrode E (V) vs Ag/AgCl $B = 1 - (I_0^{Fun} / I_0^{Au})$ Where, I_0^{Fun} and I_0^{Au} are the oxidative peak currents obtained from the CV curves Holst Centre for functionalized electrode (3MPA alone and 3MPA-pOBP) and the bare Au electrode respectively Carton Pac

K₄Fe(CN)₆ electro-active

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

FLEXSmell

Botest

XPS pOBP SAM characterization

I-V Characteristics

 $V_T = -0.01 \pm 0.06$ V, *on/off* current ratio of 150 ± 110 and $\mu_{\text{FET}} = 1.1 \pm 0.2 \ 10^{-1} \text{ cm}^2/\text{Vs.}$

Sensing of tine neutral species with WGOFETs **FLEXSmell** UNIVERSITÀ DEGLI STUDI DI BARI ALDO MORO -1,6**pOBP-SAM** COLI POLYTICHNIQUI MEALE DE LAUSAN ,100 pM **pOBP WGOFET exposed to** nc -1,2 **500 рМ** (S)-(+)-carvone MANCHESTER Vn-0,8 S l nM .5 nM -0,4 VT 0,0 Holst Centre -0,1 -0,2 -0,3 -0,5 0,0 -0,4 Carton Pack Botest

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

member of the ASVS G

dose-curves with WGOFETs

UNIVERSITĂ degli studi di bari ALDO MORO

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

the two enantiomers on the very same gate

Decoupling capacitance and threshold voltage

UNIVERSITÀ degli studi di bari ALDO MORO

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

The response is dominated by capacitance

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

(S)-(+)carvone / pOBP complex

UNIVERSITÀ degli studi di bar ALDO MORC

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

electronic OFET Bilayer configuration

A sensitivity-enhanced field-effect chiral sensor

LUISA TORSI^{1,2}*, GIANLUCA M. FARINOLA¹, FRANCESCO MARINELLI¹, M. CRISTINA TANESE¹, OMAR HASSAN OMAR³, LUDOVICO VALLI⁴, FRANCESCO BABUDRI^{1,3}, FRANCESCO PALMISANO^{1,2}, P. GIORGIO ZAMBONIN^{1,2} AND FRANCESCO NASO^{1,3}*

¹Dipartimento di Chimica, Università degli Studi di Bari, 70126, Bari, Italy ²Centro di Eccellenza TIRES, Università degli Studi di Bari, 70126, Bari, Italy

^sCNR ICCOM Bari. Dipartimento di Chimica. Università degli Studi di Bari. 70126. Bari. Italy

⁴Dipartimento di Ingegneria dell'Innovazione. Università degli Studi di Lecce, 73100, Lecce, Italy

*e-mail: torsi@chimica.uniba.it; f.naso@chimica.uniba.it

Figure 1 Bilayer OTFT chiral sensor structure. The transistor has a bottom-gate device structure that consists of a highly n-doped silicon wafer (resistivity 0.02–1 Ω cm⁻¹) nature materials IVOL 7 I MAY 2008 I www.nature.com/naturematerials

© 2008 Nature Publishing Group

Luisa Torsi - Università degli Studi di Bari "Aldo Moro" (Italy)

412

(R)-(-)carvone / pOBP complex

enanthio-selectivity factor > 6

UNIVERSITÀ degli studi di bari ALDO MORO

Botest

markedly different levels of cooperativity and an exceptionally high ESF

The pOBP capacitance model

2.4 % of the total surface of the protein exposed to the solvent (~ 7 nm²) it well accommodate a few water molecules

G. Lattanzi

R(-)-Carvone \longrightarrow $C_{OBP} \simeq C_w$ **S(+)-Carvone** \longrightarrow $C_{OBP} = C_p$

high dielectric percolative path, "water channel"

dissociation constant for 2D receptors

 $\Delta G^0 = \operatorname{RT} \ln[K_{\mathbf{D}}]$ **Surface segregated OBP** $\Delta G^{\circ}_{FET}^{(+)} = - (49.2 \pm 0.1) \text{ kJ/mol}$ $\Delta G^{\circ}_{FET}^{(-)} = -(41 \pm 2) \text{ kJ/mol}$ **OBP** in solution $\Delta G^{\circ}_{sol}^{(+)} = - (36.00 \pm 0.05) \text{ kJ/mol}$ $\Delta G^{\circ}_{sol}(-) = - (33.0 \pm 0.1) \text{ kJ/mol}$

the thermodynamic cycle

Financial support

BES-PRIN 09

2009AZKNJ7

launching a new journal

Flexible and Printed **Electronics**[™]

Luisa Torsi

Regional Editor for Europe

University of Bari, Italy

fpe@iop.org iopscience.org/fpe

Editor-in-chief: Prof. Ananth Dodabalapur - University of Texas at Austin, USA

