Abstract: |
The electrocardiographic signal represents the electrical activity of the heart. It has several nodes able to generate synchronized electrical impulses to sequentially activate its valves. All this impulses overlapped form the well-known QRS complex (Figure 1). Usually, the position of the R peak is taken as the instant in which the heartbeat has place. Thus, to determine the heart rate it is necessary to find all the R peaks present during the measurement of the ECG signal.
Heart Rate (HR) is controlled by the Autonomous Nervous System (ANS), which is composed by the Sympathetic Nervous System (SNS) and the Parasympathetic Nervous System (PNS). Both of them, SNS and PNS, respond to the necessities of the rest of physiologic systems (thermoregulatory, vasomotor, respiratory, central nervous, etc. systems) which make possible to correlate variations in the HR with the performance of all those systems. In short, due to the easiness with which is possible to obtain the ECG signal, and taking into consideration that is taken through a non-invasive measurement, several parameters of it have been studied for helping to the diagnosis of several diseases and as a tool to study the patients’ fitness. However, to study carefully the performance of those physiological systems, in most of the cases it is not only enough to know just the HR, but also the Heart Rate Variability (HRV), which is the focus of the study carried out through this thesis.
|